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Motivations Main contributions

Remove specular highlights from a single face photo
Estimate illumination environment from the specular highlights for
rendering virtual objects realistically

Highlight-Net

e

Challenges

Lack of training data:
Synthetic data does not work well
- Impractical to capture ground truth real data under natural

Illumination

Our observation

Diffuse chromaticity over a given person’s face Is invariant across
Images

Overview

The highlight reflections are predicted from a single image by
Highlight-Net, then they are traced back to the scene to recover a
non-parametric environment map, with which virtual objects can be
inserted into the input image with consistent lighting.
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- An unsupervised method for training a highlight extraction
network using unlabeled real data
Recovery of a non-parametric illumination representation that
includes both low- and high-frequency components

Pretraining by synthetic data

- Training data: a small set of synthetic data, with ground truth

- Problem: does not work well for real data, as shown in column 4
of Fig. 1, due to the gap in appearance between synthetic and
real Images

- Solution: an indirect method for finetuning with unlabeled real
data

Unsupervised finetuning by real data

- Dataset: the Microsoft-Celeb-1M dataset (each celebrity has
more than 100 unlabelled images)
- Preprocessing: a set of calibrations
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- Finetuning: 4 input images of the same person form a batch.
Diffuse layers are obtained by Highlight-Net and transformed to
chromaticity, then each of 4 chromaticity maps are reshaped to a
vector and stacked together as a matrix D.

- Unsupervised loss: since the diffuse chromaticity of a person’s
face should be the same in all images, matrix D should be low
rank If the highlights are correctly removed. We thus define a low
rank loss as the second singular value o5:

D = UXV' (SVD decomposition)
Y = diag(o4, 05,03,04)
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Mirror reflection  vs  Phong specular reflection

lHlumination estimation

Step 1. Highlights on faces are treated as mirror reflection, and
projected back to environment map (with estimated face normal)
Step 2: To account for the non-mirror reflections, the environment

map Is deconvolved by Phong lobe defined by statistics in the
MERL/ETH Skin Reflectance Database.

Initial traced environment map Map after deconvolution Final environment maps after
llumination color rescaling (Sec 5.3)

Step 3. Repeating for 3 channels, we get the color environment map.

Fig.1 Comparisons of highlight removal on real data (ground truth diffuse images captured by cross-polarization)
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Fig. 2 Highlight removal results on challenging data with strong expressions, occluders, various skin tones, and ages
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