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Abstract It is challenging to automatically explore an un-
known 3D environment with a robot only equipped with
depth sensors due to the limited field of view. We intro-
duce THP, a tensor field-based framework for efficient en-
vironment exploration which can better utilize the encoded
depth information through the geometric characteristics of
tensor fields. Specifically, a corresponding tensor field is
constructed incrementally and guides the robot to formulate
optimal global exploration paths and a collision-free local
movement strategy. Degenerate points generated during the
exploration are adopted as anchors to formulate a hierarchi-
cal TSP for global path optimization. This novel strategy
can help the robot avoid long-distance round trips more ef-
fectively while maintaining scanning completeness. Further-
more, the tensor field also enables a local movement strategy
to avoid collision based on particle advection. As a result,
the framework can eliminate massive, time-consuming recal-
culations of local movement paths. We have experimentally
evaluate our method with a ground robot in 8 complex in-
door scenes. Our method can on average achieve 14% better
exploration efficiency and 21% better exploration complete-
ness than state-of-the-art alternatives using LiDAR scans.
Moreover, compared to similar methods, our method makes
path decisions 39% faster due to our hierarchical exploration
strategy.
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(a) Our hierarchical exploration driven by tensor field (b) Path w/o tensor field

Fig. 1 THP plans trajectories (a) based on hierarchical exploration
strategies driven by tensor fields. Based on these fields, our method
provides a coarse topology matching the structure of the scene for
the robot to navigate, and groups for robot scanning at a fine-grained
level. With similar completeness of scanned scene, the path in (a)
is 52.734 m but 105.282 m in (b), doubling the efficiency of explo-
ration.

1 Introduction
With the increasing demand for intelligent robot applications
such as vacuum cleaner robots and autonomous navigation,
how to thoroughly explore an unknown 3D environment effi-
ciently has emerged as a core problem in modern robotics [1].
Finding an optimal exploration path while the detected envi-
ronment is dynamically updated is challenging. This prob-
lem becomes critical when the target environment is large
and complex. The main challenge is how to balance explo-
ration completeness and speed given a limited vision of the
whole picture.

Commodity depth sensors such as RealSense and Kinect
are widely available for robots, greatly enhancing perception
on a low budget [2]. However, most previous works [3–6]
still rely on expensive LiDAR devices for exploration and
mapping. LiDAR sensors can provide a 360-degree field of
view (FOV) for orientation-independent scanning, which en-
ables these frontier-based methods to focus more on scan-
ning completeness, but not efficiency. Consequently, adopt-
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ing these methods directly for a robot with depth sensors
would usually fail due to the limited FOV and additional
computation introduced by the changing orientation.

A suitable representation of the progressively recon-
structed scene is the key to efficient and complete explo-
ration. Xu et al. [7] introduce the tensor field method for
smooth scene reconstruction. A time-varying tensor field
can be updated in real-time and used to directly guide the
robot’s movement. While the scanning FOV is limited, [7]
demonstrates that the topological structure of tensor fields
is adequate for efficient global path routing within a par-
tially reconstructed scene. However, this method is ineffec-
tive for large and complex scenes. In such cases, exploration
is severely limited by the initially extracted topology without
global optimization as shown in Figure 11.

We introduce THP, a hierarchical tensor field-based robot
exploration framework, which takes advantage of both
frontier-based and tensor-field-driven methods. To further
release the power of the tensor field for global optimiza-
tion, we adopt sparse degenerate points as anchors to bet-
ter utilize the partial topological structure for global path
optimization. Specifically, we have found that the degener-
ate points are usually generated at joint points of the struc-
ture, such as entrances and porches. Since these anchors
are generated dynamically during the exploration, we denote
them as extended nodes in a travelling salesman problem
(TSP) to determine an optimal tour to form the coarse topol-
ogy (Figure 1(left)), which can help the robot avoid long-
distance round trips during exploration. Furthermore, a fron-
tier grouping-based scanning strategy is proposed for fine-
grained level exploration. We dynamically group the fron-
tiers around the anchors, and a local fine-level exploration
path (Figure 1 right) is generated for complete scanning.
Thus, a hierarchical exploration strategy is introduced to en-
sure scanning completeness while maintaining exploration
efficiency. We have evaluated our method with a ground
robot using 8 complex indoor scenes. Our method achieves
on average 14% better exploration efficiency and 21% bet-
ter exploration completeness than state-of-the-art LiDAR-
based methods. Moreover, compared to similar methods, our
method is 39% faster at path decisions (locating the next ex-
ploration goal point) with the help of our hierarchical explo-
ration strategy.

Furthermore, the tensor field also enables a movement
strategy which avoids collisions, via a particle advection ap-
proach. The A* algorithm is the most commonly used ap-
proach to find the shortest collision-free path to the next ex-
ploration goal point. However, it is time-consuming if the

environment is large. Previous works [8] based on LiDAR
scans adopt techniques such as offline search strategies to
find local movement paths, which are highly efficient. How-
ever, it is highly dependent on the complete FOV provided by
LiDAR. In contrast, our framework can eliminate massive,
time-consuming recalculations with the tensor field, which
can be updated in real-time and has no requirement for wide
FOV. As a result, our tensor field-based movement strategy
with depth scans can perform as well as or even better than
state-of-the-art alternatives using LiDAR scans.

In summary, the contributions of this paper include:
• Adoption of degenerate points in the tensor fields as

anchors to formulate tour optimization as an online
TSP for coarse topology generation, which significantly
increases the effectiveness of the tensor-field-driven
method in complex environments.

• A frontier grouping-based scanning strategy for fine-
grain exploration. This dynamic grouping strategy,
which depends on the degenerate points, can ensure
scanning completeness while maintaining exploration
efficiency.

• A tensor field-based hierarchical exploration frame-
work for an autonomous robot using only depth sensors,
which can significantly outperform even state-of-the-art
methods using LiDAR.

2 Related work
2.1 Field-guided path planning

Adopting vector fields to efficiently guide robot navigation
has been practised for decades [9]. However, their crowded
singularities usually trap the robot in local minimum or gen-
erate discontinuous robot motions. Vector field histograms
(VFHs) [10] were proposed to solve such problems. VFHs
can drive the robot to smoothly move and quickly respond in
an environment arranged with dense obstacles, and the robot
does not need to stop for the next plan. The main drawback
of this representation lack of efficiency for global guidance.
The gradient field method [11] combines potential fields with
a global guiding structure to perform global path planning. In
addition, it also incorporates frontier-based and local vector
field-based strategies to generate shorter exploration trajec-
tories. However, it suffers from a very high computational
cost. Tensor fields were introduced to guide the robot to au-
tonomously reconstruct the scene and smooth the routing
path in time-varying environments [7], but such methods fail
in scenes with complex structures as no global optimization
is performed.
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Fig. 2 We show one exploration at frame t in detail to describe the pipeline of THP. Firstly, THP obtains a set of degenerate points (green
circles) and generated degenerate points during exploration (red circles) in (b) for the partial scene (a). Secondly, degenerate points based
TSP extension (see Section 3.3) dynamically extends the TSP by the generated points. The extended T SP(p1) provides the order for all
degenerate points with starting point p1. Next, fine-grained scanning is conducted within the group Fk computed by G(Fk) which groups
the frontiers fm to the nearest degenerate point pk (see Section 3.4). Once the frontier in Fk has been explored, the degenerate point pk
is marked as visited (gray circles). Meanwhile, when the trajectory is planned by A∗, the surrounding tensor fields will also change and
create a new advection (green arrows) for the robot to avoid obstacles (see Section (3.5)). Overall, complete and efficient exploration is
accomplished by THP for frame t.

2.2 Frontier-based Exploration

Unlike field-guided path planning, frontier-based methods
focus on exploration completeness. Yamauchi [12] intro-
duced the notion of frontiers, the boundary between free
space and unexplored space, to guide robot exploration. They
can help the robot to perform more complete and efficient ex-
ploration. However, they usually make wrong decisions due
to lack of global planning. Dirk et al. [13] proposed two sim-
ple heuristics to improve [12]. The first is to repeatedly vali-
date the current target. They also adopt Voronoi diagrams to
ensure a more complete exploration of the entire room. This
method depends on the correctness of the scene segmenta-
tion while it is challenging to make one in an open environ-
ment. Miroslav [14] formulates this problem as a traveling
salesman problem (TSP) and uses the chained Lin-Kernighan
heuristic to define the distance cost. Doing so can signifi-
cantly reduce the exploration time and generate more feasible
trajectories. However, unnecessary computation is repeated
on all unvisited frontiers even if some frontiers are close.
TARE [15] is the state-of-the-art frontier-based method for
environment exploration. It requires expensive LiDAR de-
vices to provide high-quality and complete FOV scans, and
it is unsuitable for low-cost depth cameras.

3 Method
3.1 Overview
Vector fields and tensor fields are commonly used to guide
autonomous robot navigation [9, 16]. Tensor fields can be uti-
lized to provide locally smoother path advection and better
obstacle avoidance [7]. In addition, the topology generated
by connecting all singularities (degenerate points), provides
an efficient reference for global path planning. Therefore, our
proposed THP is driven by tensor fields to perform hierarchi-
cal exploration.

We find that the degenerate points distributed at the joint
points of the scene’s structure can act as anchors, used to
drive the global path generation process via TSP [17]. These
anchors are constantly generated and the trajectories should
be updated simultaneously. We formulate an online TSP on
these dynamically updating anchors and find a tour with min-
imal cost connecting all anchors to form a coarse topology for
navigation. Note that our degenerate point based online TSP
design (see Section 3.3) can significantly enhance the orig-
inal tensor-field-driven method if the environment is com-
plex.

Having a coarse topology for routing, we try to scan the
scene at a fine-grained level. A common formulation of such
exploration utilizes frontiers. Most previous methods [12,
18] only greedily select frontiers for exploration which leads
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to a more time-consuming computation for global optimiza-
tion. Instead, we design a frontier grouping strategy (see Sec-
tion 3.4) which groups the frontiers near the anchors and pro-
vides better ordering for access. This strategy helps the robot
perform a complete scan with lower TSP computation cost.

Given the routing topology and next goal position, we then
plan the robot’s moving path. Directly routing between the
current position and a goal point is sometimes discontinuous
or ambiguous [7]. To plan the moving path, we adoptA∗ [19]
to find the shortest collision-free path (see Section 3.5). How-
ever, it is time-consuming for large scenes. We find that the
tensor fields change in real-time as the environment is up-
dated, which can guide the robot moves along the advection
without A∗. This can help us to reduce the frequency of us-
age of theA∗ algorithm and smooth the path. Unlike [15], our
method has no requirement for large FOV. Figure 2 shows the
pipeline of our method.

3.2 Concepts and Terminology

A tensor field T ⊂ R2×2 for a 2D planeD ⊂ R2 is a smooth
tensor-valued function which associates every point p ∈ D
with a second-order tensor:

T (p) =

(
τ11(p) τ12(p)
τ21(p) τ22(p)

)
. (1)

A tensor [τij ] is symmetric if and only if τij = τji.
The tensor T used in our method is symmetric, and so can
be uniquely decomposed into an isotropic part S and an
anisotropic part A:

T = S +A = λ

(
1 0
0 1

)
+ µ

(
cos 2θ sin 2θ
sin 2θ − cos 2θ

)
(2)

where µ > 0. A has eigenvalues ±µ. A deviate tensor field
A(p) is equivalent to two orthogonal eigenvector fields when
A(p) ̸= 0:

E1(p) = µ(p)e1(p)

E2(p) = µ(p)e2(p)
(3)

where e1(p) and e2(p) are unit eigenvectors corresponding
to eigenvalues µ and−µ. As a result, E1 and E2 are the ma-
jor and minor eigenvector fields of A. We move the robot
directed by the major eigenvector in our approach.

Degenerate points are used to construct the coarse topol-
ogy. We consider point p to be a degenerate point for a tensor
field T if and only if A(p) = 0, and regular otherwise. The
most basic types of degenerate points are wedges and trisec-
tors (see Figure 3).

Next, we consider how to build a complete tensor field. A
tensor field is constructed on a set of elements. An element
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(a) wedge (b) trisector

Fig. 3 Degenerate points. Blue lines are separatrix lines.

can be either regular if a tensor value is specified, or singu-
lar if a particular type of degenerate point is needed. Every
element is extended to a basis tensor field and the final tensor
field is a sum of these basis fields [20].

Given a regular element (S0, T0) defined at p0, we calcu-
late ρ0 =

√
S2
0 + T 2

0 and θ0 = arctan(T0/S0). A basis field
is then defined as:

T0(p) = ρ0

(
cos 2θ0 sin 2θ0
sin 2θ0 − cos 2θ0

)
T (p) = exp

(
−d∥p− p0∥2

)
T0(p)

(4)

where d is a decay constant used to control the influence of
the basis field. The exponential weight is strong at the center
of the element and becomes weaker for distant points p. This
ensures that the sum of basis tensor fields maintains desired
values at the specified location.

3.3 Degenerate Point Based Online TSP
3.3.1 Idea

[7] views the topological skeleton of the tensor field as an
undirected graph with nodes all the degenerate points and
edges the separatrices connecting them. Inspired by [7], we
utilize the graph which has a rough coverage of the entire
scene to drive the topology-based path routing. However, de-
generate points are generated during exploration. [7] routes
using static degenerate points and so is unable to support
global path optimization. Previous works use a greedy strat-
egy to find the exploration trajectory, always selecting the
nearest point for the next goal position. Such a fixed strategy
prefers the goal position closest to the robot without consid-
ering subsequent actions.

Instead, we formulate an online TSP by conducting TSP on
updated degenerate points to maintain an optimal tour order
for them. This ensures that the coarse topology for navigation
is dynamically generated. Furthermore, our online TSP can
also reduce the time needed to make exploration decisions.
Our experiments (see Figure 8) demonstrate the efficiency of
our method.
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3.3.2 Online TSP formulation
Given the tensor fields T in the current state, we obtain a
set of degenerate points P = {p0, . . . , pi}, pi ∈ D. The
set of new generated degenerate points is denoted P∗ =

{p0, . . . , pj}. The updated P is defined as:
P ← P ∪ P∗ = {p0, . . . , pn} , n = i+ j

P ∩ P∗ = ∅
(5)

If a degenerate point pi is visited, we remove it fromP:P ←
P − {pi}.

We denote the length of the path between degenerate
points i and j as dist(pi, pj). Given degenerate points
{p0, . . . , pn}, the TSP is an optimization problem: find a per-
mutationΠ = {π1, . . . , πn} of I = {1, . . . , n} starting from
p0 such that the length of the tour over all permutations is
minimal. The TSP problem is thus formulated as:

T SP(p0) = min
Π

(dist(p0, pπ1) +

n−1∑
i=1

dist(pπi , pπi+1)) (6)

The point pπ1 is then selected as the next goal position. Note
that the TSP finds the best-closed tour and ends at an arbitrary
point instead of returning to the beginning. This prevents the
TSP solver from producing unnecessarily long trajectories.

3.3.3 Online TSP Solver
To solve the problem, we should first select the optimal start-
ing point p0. It is natural to find the nearest degenerate point
p0 to the robot location cr using dist(p0, pr). This strategy
prevents the robot from moving far away to start traveling.
After choosing the starting point, we have to calculate the
distance between the current point and the next as cost for ob-
ject function optimization. Euclidean distance is commonly
adopted to calculate spatial distance. However, it is not an
accurate measure of the length of a path when there are ob-
stacles (e.g. walls, furniture) between two points. Therefore,
we use the A∗ algorithm for dist(pi, pj) computation. A so-
lution of TSP is found using the starting point and distance
cost. Algorithm 1 summarizes the extension process.

3.4 Frontier grouping strategy
3.4.1 Approach
To plan exploration, our method scans the scene at a fine-
grained level based on the coarse topology. Most frontier-
based exploration methods detect all frontiers and iteratively
select the most appropriate frontier as the next robot goal to
generate the trajectory. Miroslav et al. [14] formulate the TSP
problem on frontiers to decide the exploration order, and the
computation is repeated on each unvisited frontier, which is
time-consuming. Instead, we have planned an optimal tour

Algorithm 1 Online TSP.
Input: Degenerate point set: P = {p0, . . . , pi}.

while P is not ∅ do
Select the starting point closest to the robot:
p0 = arg minp0∈P dist(p0, cr);

Compute T SP(p0) giving order
Π = {π1, . . . , πn};

Add starting point to Π: Π← {p0} ∪Π

foreach πn in Π do
Visit pπn

;
Remove pπn

from P: P ← P − {pπn
};

Compute extension degenerate points: P∗:
P∗ = {p0, . . . , pj};

if P∗ is not ∅ then
Break from the loop;

end if
end foreach
Update the degenerate point list: P = P ∪ P∗;

end while

topology based on degenerate points and so exploration can
be carried out along the topology. Therefore, we dynamically
group the frontiers around the degenerate points. The key
idea is that the global path generated from the topological
skeleton of the degenerate points covers the entire scene, so
provides a reasonable basis for frontier grouping. In addition,
exploration efficiency will be improved by visiting groups in-
stead of visiting a single one.
3.4.2 Frontier grouping
The frontier is the boundary between free space and the ex-
plored area [12]. Let the position of the frontier be f . For
each fm in F = {f0, . . . , fm}, we calculate the Euclidean
distance between it and degenerate points P = {p0, . . . , pn}
to find the nearest degenerate point pk:

dk(fm) = arg min
pk∈P

∥fm − pk∥. (7)

Then we define a grouping function G(Fm) which groups
fm into Fk whose distance to pk is smaller than the distance
threshold df :

G(Fk) = {fm| ∥fm − dk(fm)∥ ⩽ df} (8)

Fk is updated to include fm:Fk ← Fk∪{fm}. The threshold
df is set to 2 m in our experiments.

However, some frontiers are too far to be grouped: ∥fm −
dk(fm)∥ > df . To cover these frontiers, we take them as de-
generate points to automatically extend the degenerate point
list P ← P ∪ {fm}.

After grouping, we scan each frontier group along the de-
generate points in order of permutation Π. During scanning,
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Algorithm 2 Frontier grouping and splitting.
Input: Degenerate points ordered by TSP:

P = {p0, p1, . . . , pn}.
Input: Frontier set: F = {f0, . . . , fm}.

foreach fm in F do
if G(fm) is not ∅ then

pk = G(fm);
Add fm to group Fk: Fk = Fk ∪ {fm};

else
P = P ∪ {fm};

end if
end foreach
foreach group Fk do

foreach fk ∈ Fk do
if S(fk) = ∅ then

Set fk as a degenerate point:
P ← P ∪ {fk};

else
Scan fk;
Remove fk from group Fk:
Fk ← Fk − {fk} ;

end if
if Fk = ∅ then

Remove pk from P: P ← P − {pk};
Break from the loop;

end if
end foreach
Delete the group Fk;

end foreach

if the frontier fk ∈ Fk is visited, it is removed from the group
Fk ← Fk−{fk}. When the group Fk is empty, the degener-
ate point pk is also considered as visited and removed from
the degenerate point list: P ← P − {pk}. Then, we follow
the permutation Π to find the next degenerate point and scan
its corresponding group.

3.4.3 Group splitting
However, simply grouping the frontiers is not sufficient be-
cause an obstacle (e.g. a wall) may lie between two frontiers
in the same group. A robot path including two such frontiers
will include long detours. See Figure 4(a): when the robot is
exploring frontier group Fi in the top-left room, it is a poor
choice for it to go out to scan the other frontiers of Fi (blue
trajectory) and return to the room to visit the next group Fj

(pink trajectory). To solve the problem, any group spanning
two rooms is split dynamically.

Let the distance between the robot’s location cr and group
Fk be ∥cr, pk∥ as measured by Euclidean distance between
cr and pk. The path length between fk ∈ Fk and the robot is

Fig. 4 Group splitting. An obstacle (e.g. a wall) may lie between
two consecutive frontiers of one group, resulting in long detours (a).
We dynamically divide the frontier into two groups (b).

dist(cr, fk)which is calculated using theA∗ algorithm. Then
we define a split functionS(fk) based on these two distances.
S(fk) splitsFk by filtering out frontiers whose path length to
the robot is significantly different from the distance between
the robot and its original group center:

S(Fk) = {fk|fk ∈ Fk, ν ⩾ dg ∨ (µ < dp ∧ ν < dg)} (9)

The filtered frontiers {Fk − S(Fk)} are viewed as new de-
generate points and inserted into P . The thresholds dg and
dp are set to 2 m and 3 m respectively in our experiments.

As Figure 4(b) shows, the planned trajectories are shorter
after splitting such a group (green circles), reducing explo-
ration time. Details are given in Algorithm 2.

3.5 A∗ algorithm based path planning

Given the coarse topology and next goal position, the explo-
ration trajectory should be planned in the next step. [7] di-
rectly computes the robot movement path as a pathline de-
fined by a particle advected by the fields. However, the path
may be discontinuous and ambiguous if the scene is com-
plex. The A∗ algorithm is a common method for path plan-
ning, and we adopt it to find the shortest collision-free path
between the current position and the next exploration goal
point.

The depth sensor has a limited FOV, and it cannot be freely
used to enhance efficiency of exploration, as moving safety is
also critical. In our strategy, the depth sensor generally faces
the robot’s moving direction to prevent collisions. Therefore,
our planning algorithm only outputs positions for the moving
trajectory.
A∗ computation is time-consuming for large scenes. To re-

duce the frequency ofA∗ algorithm computation, TARE [15]
adopts an offline searching strategy to find a local movement
path but it highly depends on having a complete FOV. In con-
trast, we move the robot with the power of tensor fields (see
Figure 5(b)). We note that in our approach, the path planned



THP: Tensor-Field-Driven Hierarchical Path Planning for Autonomous Scene Exploration with Depth Sensors 7

by A∗ changes the surrounding tensor fields, but the changed
tensor fields also provide new advection for A∗ to update the
trajectory. Positive feedback between the planned path and
tensor fields help our approach to further guide the robot to
determine a better path. Consequently, the frequency of the
A∗ algorithm computation is significantly reduced.

Given a global path T planned by the A∗ algorithm, we
compute the surrounding tensor field. [7] projects the grid
cells onto the floor plane and performs farthest point sam-
pling with distance ds = 0.2 m over the centers of the
projected boundary cells to select a set of 2D constraint
points. We project T to the plane to sample constraint points
Pc = {p0, . . . , pc}. Note that the points in Pc are ordered
by the direction of the path. Then we compute the regular
element (Sc, Tc) based on the two sequential points pc−1

(xc−1, yc−1) and pc (xc, yc):
Sc = xc − xc−1

Tc = yc − yc−1

(10)

Next, we compute the basis tensor field Tc(p) for every
constraint point pc ∈ Pc using Eq. 4. The fields are regular,
with major eigenvector aligned with the tangent to the path
through the points on the 2D path. Therefore, the fields can
provide new advection for the robot to move and avoid ob-
stacles. The final tensor field is computed by summing the
basic fields of all constraint points using a Gaussian radial
basis function:

T (p) =
∑
c

exp
(
−d ∥p− pc∥2 /σ2

)
Tc(p) (11)

with decay constant d = 1. The Gaussian bandwidth σ can
be used to control the range of influence of a basic field; we
set the value to σ = 2.5ds. Figure 5(a) shows fields generated
on T .

The advantages of this design are clear. The field updat-
ing process is repeated during global path routing, and corre-
sponding degenerate points may disappear which solves the
problem of discontinuous or ambiguous movement. In addi-
tion, the robot can route along the particle advection of fields
when an obstacle blocks the global path without another A∗

search calculation. Figure 5(b) shows changes in the tensor
fields affected by the global path.

4 Experiments
4.1 Setting
We have implemented our method using ROS on a 3.8GHz
AMD3900X computer, using a single CPU thread. The per-
ception range of the depth camera is set to 5 m in our sim-
ulation. When computing the tensor field, we employ a 2D
spatial grid with a resolution of 0.1 m.

������

(a) Path planned byA*-algorithm (b) Updated tensor fields

Fig. 5 Changes in tensor fields affected by the A∗ planned path.
(a) A path is generated by the A∗ algorithm but blocked by the ob-
stacles in the unexplored area. (b) The robot moves along the path
and surrounding tensor fields are changed, providing new advection
for obstacle avoidance.

To ensure efficiency, the global path given by A∗ can only
modify the tensor field within its σ = 2.5ds = 0.5 m range.
For ROS simulation, the maximum speed is set to 1m s−1

for the ground vehicle. The vehicle is equipped with a fixed
(forward-looking) RGB-D camera (Kinect), used for explo-
ration and mapping.

4.2 Benchmark
4.2.1 Datasets and comparison
We conduct comparison based on the Matterport
dataset [21]. We use all 8 large single-layer scenes which
are available for complete exploration via a ground robot in
the simulation. We compare our method to three state-of-
the-art methods on this dataset: TARE[15], BAYES[22] and
TENSOR[7], and to further demonstrate the advantages of
our method, we also use two further specifically designed
alternatives:

• TARE: A state-of-the-art exploration framework based
on LiDAR scans.

• BAYES: The planning strategy uses a Bayesian formu-
lation for target point selection when exploring an un-
known environment.

• TENSOR: The method harnesses a time-varying tensor
field to guide robot movement.

• GREEDY: A frontier-based strategy that guides robot
exploration based on [12].

• TARE-RGBD: To make a fair comparison, we also
straightforwardly implemented TARE using depth cam-
era input.

4.2.2 Metrics
We use several basic metrics to assess our approach.

• Completeness ϵ is defined as the explored volume over
the entire run, indicating the completeness of scanning.

• Length of trajectory L indicates the exploration effi-
ciency of the robot.
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Table 1 Volumes explored by different methods. Volume is denoted ϵ. The ratio of ϵ compared to that of our method is denoted rϵ.

Method Scene 1 Scene 2 Scene 3 Scene 4 Scene 5 Scene 6 Scene 7 Scene 8
ϵ rϵ ϵ rϵ ϵ rϵ ϵ rϵ ϵ rϵ ϵ rϵ ϵ rϵ ϵ rϵ

Ours 65.184 1.0 98.192 1.0 98.352 1.0 93.248 1.0 44.800 1.0 103.664 1.0 145.752 1.0 77.936 1.0
GREEDY 65.080 0.998 93.712 0.954 98.352 1.0 93.392 1.002 39.576 0.883 87.488 0.844 144.592 0.992 64.256 0.824
TARE 65.376 1.002 91.488 0.932 83.808 0.852 93.256 1.000 16.944 0.378 31.896 0.308 136.976 0.940 78.496 1.007
TARE-RGBD 38.512 0.591 79.944 0.814 44.176 0.449 83.088 0.891 24.624 0.550 41.768 0.403 107.552 0.738 50.024 0.642
BAYES 57.254 0.878 98.057 0.999 58.356 0.593 86.806 0.931 43.600 0.973 71.171 0.687 130.151 0.893 65.048 0.835
TENSOR 34.096 0.523 56.440 0.575 57.504 0.585 59.440 0.637 44.496 0.993 65.352 0.630 124.968 0.857 10.984 0.141

(a) Scene1 (b) Scene2 (c) Scene3 (d) Scene4

(e) Scene5 (f) Scene6 (g) Scene7 (h) Scene8

Fig. 6 Volumes ϵ versus length of trajectory L for various scenes and methods.

4.3 Initial Evaluation
In this section, we conduct a large number of experiments to
verify the efficiency of our approach. We confirm the THP
plans an efficient path with desired scan quality and show
quantitative results in Section 4.3.1. We also analyze the im-
portance of each module in our method in Section 4.4. Visual
comparisons are shown between our approach and previous
state of the art methods, they directly demonstrate the advan-
tages of THP (see Section 4.5).

4.3.1 Quantitative evaluation
Our evaluations mainly concern two issues, scan quality
and efficiency. We show the scanned volumes epsilon for
different methods to compare the scan quality. The rela-
tive efficiency rϵ directly compares efficiency to that of
our method. The results are shown in Table 1. Our method
only equipped with an RGB-D camera obtains similar scan
quality compared to TARE [15], the state-of-the-art method
which uses LiDAR scans. Our method outperforms TARE
on exploration completeness by 4%. The results demon-
strate the efficiency of our hierarchical exploration strategy.
GREEDY [12] achieves the same performance on Scenes
3 and 4 but also produces longer trajectories (see Fig-
ure 6(c)(d)). TARE-RGBD fails for 50% of the scenes (rϵ <
0.6): it stops the robot before accomplishing the exploration,
lacking the help of a LiDAR device. TENSOR also fails in

some complex environments because of the lack of a globally
optimal path.

We analyze the efficiency of exploration based on the
length of the trajectory. As shown in Figure 6, with a sim-
ilar quality of scans, the length of the path generated by
TARE is slightly longer than ours in Scenes 1, 2, and 8. We
achieve 20% better exploration efficiency on average com-
pared to TARE. BAYES produces the longest paths in 7 out of
8 scenes. In Figure 6(e), we improve performance by 46.1%
compared to TENSOR which is also driven by tensor fields.
In addition, in half of the scenes, GREEDY plans the same
trajectory length as ours but sacrifices the quality of scan-
ning. It is noteworthy that the slope of TENSOR’s curve is
large at the beginning which indicates that TENSOR explores
efficiently in the initial easy environment although it may fail
when the environment becomes complex.

We also analyze the memory consumed by generated ten-
sor fields for different scenes. As Figure 7 indicates, we find
that the amount of memory consumed is proportional to the
size of the scene. At the same time, we compared the time
consumed by the various stages. The results are shown in Ta-
ble 2. Although tensor field update consumes more time than
the other phases, our method can still achieve real-time re-
sults since our framework can hide the processing time from
the pipeline.



THP: Tensor-Field-Driven Hierarchical Path Planning for Autonomous Scene Exploration with Depth Sensors 9

Fig. 7 Memory consumption for different scenes.

Table 2 Average time consumption for the four different stages:
(1) tensor fields update, (2) THP & grouping, (3) path planning,
and (4) motion control.

Stage 1 2 3 4
Scene 1 216.3 ms 1.2 ms 2.9 ms 49.3 ms
Scene 2 381.5 ms 1.7 ms 5.8 ms 48.7 ms
Scene 3 370.1 ms 1.7 ms 8.5 ms 45.1 ms
Scene 4 320.0 ms 1.6 ms 5.5 ms 45.5 ms
Scene 5 125.8 ms 1.0 ms 3.5 ms 46.7 ms
Scene 6 240.0 ms 1.5 ms 3.1 ms 46.0 ms
Scene 7 472.6 ms 1.8 ms 6.0 ms 51.3 ms
Scene 8 284.4 ms 1.5 ms 6.3 ms 54.0 ms

Table 3 Directly routing with degenerate points and paths gener-
ated from extended generate points. Nd, N ∗

d : number of degener-
ate points and extended degenerate points respectively. ϵ: scanned
volume. Path length: L .

Scene 1 Scene 2
Nd N ∗

d L (m) Nd N ∗
d L (m)

w/o extension 12 - 72.16 22 - 81.58
our method 12 21 52.73 22 40 70.65

4.4 Ablation study

In this section, we conduct a series of experiments to evalu-
ate the contribution of each module in our method. We also
analyze the results to demonstrate their advantages and im-
portance.

4.4.1 Effectiveness of extended degenerate points
We argue that a limited number of degenerate points is un-
able to support a global path for a more complex scene. Using
degenerate points generated during the exploration provides
an updated topology for TSP to extend the path. The planned
path thus allows the robot to route more efficiently and scan
more completely. We show the results of a planning strategy
without extended degenerate points in our method in Table 3.
Using extended degenerate points helps the robot reduce the
path length by 19.43 m and 10.93 m for Scenes 1 and 2 re-
spectively. The corresponding reductions in path length are
26.9% and 13.4%.

Fig. 8 TSP runtime comparison for different grouping strategies.

4.4.2 Effectiveness of frontier grouping
We compare different frontier grouping strategies in this ex-
periment. Figure 8 gives the TSP runtime for each explo-
ration step. We implement a strategy without grouping which
conducts TSP on each frontier. We also implement the k-
means clustering strategy on the frontier as described in [14].
Overall, our approach (red line) performs well in almost all
steps has lowest TSP cost. The method without grouping
(green line) is the most time-consuming. The reason is that a
frontier is usually adjacent to at least one frontier and these
frontiers can be grouped for visiting together. Our method
conducts TSP on each group instead of each frontier and thus
reduces the frequency of TSP computation. The performance
of the clustering strategy is similar to that of our method but
slightly worse than ours in most cases. Clusters often span
two rooms which produces needless detours. The results of
our approach and the clustering method demonstrate the sig-
nificance of our group splitting strategy.

4.4.3 Effectiveness of A∗ based path planning
In order to verify the advantage of the path planned by theA∗

algorithm, we conduct a number of comparisons. We sample
partial scenes at different scales ranging from 1 m to 10 m
for the robot to move in. For each scene, we randomly crop
two partial areas on 10 different scales. Overall, this partial
scene dataset consists of 160 cases. Note that these partial
scenes are not simple, and obstacles are placed appropriately
in them to increase the challenges for navigation.

The success ratio of navigation completeness is calculated
to measure the performance of the planning method. We
plot the average success ratio of THP (red line) and TARE
(blue line) with corresponding standard deviations (red area
and blue area) in Figure 9. TARE [15] is the state-of-the-art
method and uses LiDAR scans. However, our method has
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Fig. 9 Ratio of navigation success for THP and TARE at different
scales.

Fig. 10 Efficiency for different values of df .

a higher success ratio than TARE and exceeds it by a large
margin at each scale. Note that the standard deviations of our
approach are also lower than TARE’s at every scale which in-
dicates that THP is more stable. TARE can easily fail for 9 m
scale areas which contain many obstacles and thus are more
complex, because the short paths planned offline by TARE
without dynamic global optimization have limited capacity
to cope with large or long obstacles. In contrast, our method
performs well whether the scene is simple or complex. Once
a path is planned by theA∗ algorithm, the surrounding tensor
fields will be changed. Then the updated tensor fields provide
new advection for the robot to move which is critical to ob-
stacle avoidance.
4.4.4 Effect of varying df .
To assess the effect of different parameter settings on the ef-
ficiency of exploration, we conducted some comparative ex-
periments. We set the distance threshold when grouping df
to various values from 0.2 m to 8 m. As Figure 10 shows,
the setting of df should neither be too large nor too small,
and a reasonable distance should be customized according to
the characteristics of the indoor space. We also experimented
with the parameters dg and dp when group splitting, as well
as the parameters σ when path planning, using values from
1 m to 5 m, but found that changing values had little impact
on results.

4.5 Visual comparison

We show the visual results from six indoor scenes in Fig-
ure 11. Overall, our method achieves excellent scene cover-
age giving high-quality scanning with a reasonable planned
path for all of these scenes. Compared to other methods
based on RGB-D cameras, such as GREEDY, TARE-RGBD,
BAYES, and TENSOR, we obtain more complete scanning
results, benefiting from our tensor field driven hierarchical
exploration. These methods usually quickly fail and cannot
explore further because of the complex environment: see Fig-
ure 11(a),4–6, etc. Note that we obtain comparable results to
TARE which uses precise and long-distance LiDAR scans.
However, TARE may also fail when the exploration area is
long and narrow(Figure 11(d)-3). Our method performs sta-
bly in both situations.

With similar scanning results, the path planned by
our method is more efficient and clearer. Compared to
our method, GREEDY generates a longer trajectory (Fig-
ure 11(a)-2), and elsewhere even passes through a wall (left
of Figure 11(e)-2). The path generated by BAYES is disorga-
nized and looping (Figures 11(c)-5 and 11(e)-5). In addition,
the BAYES method needs more than 30 minutes and is not
as efficient as other alternatives. TENSOR fails in areas with
complex structures. These comparisons demonstrate the ef-
ficiency of our planning strategies.

When producing the coarse topology for global path rout-
ing, it is desirable that the topology of the extended degen-
erate points reflects the floor structure of the scene being
scanned. The visiting order generated by TSP is important in
guiding robot movement. However, the pathline generated by
advection in tensor fields is usually blocked or disorientated
(Figures 11(a)-6 and 11(b)-6), which leads to termination.

A fine-grained level scanning strategy helps the robot ex-
plore more carefully and reduce the length of the trajectory.
In Figure 11(c)-1,2 we see that the second room from the
right-bottom scanned by our method is more complete than
when scanned by GREEDY and the trajectory is shorter. The
reason is that the robot directly explores the room on grouped
frontiers and thus does not route on each frontier to move into
the inside of the room. The results show the advantage of the
frontier grouping strategy for exploring small rooms (e.g. cu-
bicles).

Our approach performs well on different scenes, benefit-
ing from the A∗ planned path. As shown in Figure 11(c)-
1,4, TARE-RGBD and our method both use A∗ to generate
the routing trajectory. However, TARE-RGBD falls into a
trap and stops exploring. The positive feedback between the
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OURS GREEDY BAYESTARE-RGBDTARE TENSOR

(a)-1 (a)-2 (a)-3 (a)-4 (a)-5 (a)-6

(b)-1 (b)-2 (b)-3 (b)-4 (b)-5 (b)-6

(c)-1 (c)-2 (c)-3 (c)-4 (c)-5 (c)-6

(d)-1 (d)-2 (d)-3 (d)-4 (d)-5 (d)-6

(e)-1 (e)-2 (e)-3 (e)-4 (e)-5 (e)-6

Fig. 11 Visual results for different methods on different scenes. Both the scanning completeness, and planned paths are shown, allowing
an intuitive comparison.
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Fig. 12 Less meaningful tensor fields in an open area.

A∗ planned path and the updated tensor fields help the robot
move smoothly and avoid obstacles.

5 Conclusions
This paper presents a hierarchical robot exploration frame-
work based on tensor fields. The dynamically added de-
generate points provide a good reference to form an opti-
mized environment structure topology, enhancing the robot’s
global perception and so improving efficiency. Furthermore,
a coupled frontier group-based exploration strategy is intro-
duced to perform fine-level local scans. These two strategies
together formulate our hierarchical exploration framework,
which can perform complete exploration of an unknown in-
door scene with high efficiency. In addition, we utilize the
real-time capability of the tensor field to propose a novel A∗

based path planning method. Our method can perform simi-
larly to LiDAR-based methods, in real-time, yet with a lim-
ited FOV. The experimental results demonstrate the superi-
ority of our method.

However, due to the perceptual limitation of the depth
camera, our method can only explore indoor scenes. Results
are not ideal if the environment is an open area since the ten-
sor fields are less meaningful in this case, and cannot guide
robot movement effectively, as Figure 12 indicates. Degener-
ate points are critical for global perception in our method, so
an environment with few geometric features, such as a large
empty room, cannot demonstrate our advantages over state-
of-the-art alternatives.

We assume the camera and vehicle are fixed together in
our method. Independently optimizing the camera and ve-
hicle’s orientations to maximize efficiency is an interesting
possibility. Taking reconstruction quality into consideration
as well as exploration efficiency is also worth some effort for
many intelligent robotic applications. We hope the proposed
tensor field-based framework can inspire further robotic ap-
plications based on geometry.
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